27 C
Vientiane
Sunday, June 1, 2025
spot_img
Home Blog Page 2054

Hong Kong Baptist University-led research discovers new therapeutic target for irritable bowel syndrome

HONG KONG SAR – Media OutReach – 4 January 2023 – A research study led by scientists from the School of Chinese Medicine (SCM) at Hong Kong Baptist University (HKBU) has shown for the first time that the human gut bacterium Ruminococcus gnavus is a major trigger factor of diarrhoea-predominant irritable bowel syndrome (IBS-D). Based on this discovery, a new therapeutic target for the disease’s treatment was identified. The study also found that low-protein food items such as fresh fruits, vegetables and bread may help reduce the gut motility in IBS-D.

The research team of Professor Bian Zhaoxiang, Director of the Clinical Division and Tsang Shiu Tim Endowed Professor in Chinese Medicine Clinical Studies (middle); Dr Xavier Wong Hoi-leong, Assistant Professor of the Teaching and Research Division (right); and Dr Zhai Lixiang, Post-Doctoral Research Fellow (left) of SCM at HKBU, has shown for the first time that the human gut bacterium Ruminococcus gnavus is a major trigger factor of diarrhoea-predominant irritable bowel syndrome.
The research team of Professor Bian Zhaoxiang, Director of the Clinical Division and Tsang Shiu Tim Endowed Professor in Chinese Medicine Clinical Studies (middle); Dr Xavier Wong Hoi-leong, Assistant Professor of the Teaching and Research Division (right); and Dr Zhai Lixiang, Post-Doctoral Research Fellow (left) of SCM at HKBU, has shown for the first time that the human gut bacterium Ruminococcus gnavus is a major trigger factor of diarrhoea-predominant irritable bowel syndrome.

The research findings have been published in the internationally renowned scientific journal Cell Host & Microbe.

Curative treatment for IBS-D needed

Irritable bowel syndrome (IBS) is a common functional bowel disorder characterised by stool irregularities, abdominal discomfort and bloating. It has been estimated that about 7% of adults in Hong Kong are affected by IBS. IBS-D is the most common type of IBS and there is no known cure for the disease. Most clinical treatments for IBS-D focus on relieving symptoms.

Previous research has demonstrated that the increased production of serotonin, a key neurotransmitter involved in the regulation of gut motility, contributes to the gastrointestinal symptoms displayed in IBS-D. It has also been shown that gut microbiota play a role in regulating the levels of serotonin. However, the bacterial species concerned and the molecular mechanism by which the gut microbiota modulate serotonin production remain unclear.

Phenethylamine and tryptamine produced by Ruminococcus gnavus trigger IBS-D

To explore curative treatment options for IBS-D, a research team co-led by Professor Bian Zhaoxiang, Director of the Clinical Division and Tsang Shiu Tim Endowed Professor in Chinese Medicine Clinical Studies; Dr Xavier Wong Hoi-leong, Assistant Professor of the Teaching and Research Division; and Dr Zhai Lixiang, Post-Doctoral Research Fellow of SCM at HKBU, screened thousands of food components and their breakdown products in the fecal samples of 290 patients with IBS-D. They found that phenethylamine and tryptamine, two aromatic trace amines produced by the microbial digestion of dietary proteins, are highly enriched in IBS-D faeces, and they are associated with the severity of diarrheal symptoms in patients with IBS-D.

Probing further, the researchers found that mice which had been fed with either phenethylamine or tryptamine experienced increased stool frequencies and colonic secretions, which are major symptoms of IBS-D.

On the other hand, the team found that the gut bacterium Ruminococcus gnavus, which is enriched in IBS-D faecal samples, is a primary producer of phenethylamine and tryptamine. Furthermore, mice with this bacterium transplanted into their guts go on to develop IBS-D diarrheal symptoms. These results suggest that phenethylamine and tryptamine produced by Ruminococcus gnavus trigger IBS-D in mammals without the involvement of other risk factors of IBS-D.

Phenethylamine and tryptamine stimulate serotonin production

The research team further conducted a series of experiments to understand the mechanism by which phenethylamine and tryptamine lead to IBS-D. The results showed that phenethylamine and tryptamine directly stimulate the production of serotonin from the enterochromaffin cells in the gut through the activation of a trace amine-associated receptor (TAAR1), thereby stimulating gut motility and secretion disorders in IBS-D.

The team then explored the therapeutic potential of targeting the phenethylamine/tryptamine/TAAR1 pathway for the treatment of IBS-D. It was discovered that inhibition of TAAR1 activation through the use of a specific inhibitor effectively alleviated the diarrheal symptoms in mice which had been transplanted with IBS-D faecal samples.

Prospects for new therapeutic options

“With a full outline of the mechanism of how gut microbiota associate with gut motility disorders, our research results suggest that the phenethylamine/tryptamine-mediated TAAR1 pathway is a new therapeutic target for IBS-D,” said Dr Zhai Lixiang.

“IBS-D patients experience frequent episodes of diarrhea with accompanying abdominal pain, which reduce the quality of life. The research discoveries offer promising potential for the development of therapies for IBS-D based on the inhibition of the pathway,” said Professor Bian Zhaoxiang.

The research team also found that a diet low in phenylalanine, an amino acid and a dietary precursor of phenethylamine, suppresses gut motility in mice by reducing the microbial production of phenethylamine and tryptamine. Low-protein food items such as fresh fruits, vegetables and bread have relatively low levels of phenylalanine.

“Developing strategies to reduce the microbial transformation of dietary amino acids into phenethylamine and tryptamine, such as dietary intervention with reduced consumption of high-protein food items which usually have high phenylalanine levels, may represent a feasible approach for the management of IBS-D,” said Dr Xavier Wong.

Hashtag: #HongKongBaptistUniversity #HKBU

The issuer is solely responsible for the content of this announcement.

16,384 LEDs to revolutionize automotive lighting: Nichia and Infineon launch industry’s first high-definition micro-LED matrix solution

MUNICH, GERMANY and TOKUSHIMA, JAPAN – Media OutReach – 4 January 2023 – Automotive LED lighting technology has developed rapidly in recent years as a means for vehicle manufacturers to enhance driving comfort and road safety. In this regard, matrix LED technology for adaptive driving beam has become an important headlight feature for selective road illumination.

The new 16,384 pixel µPLS™ micro-Pixelated Light Solution from Nichia and Infineon combines high-definition resolution with industry’s highest light output. This solution enables a new automotive lighting experience by providing four-times wider field-of-view with significantly higher light output than any other current micro-mirror based HD matrix-light solution. The advanced HD light can warn drivers of hazards by highlighting people or objects, project markings on the road to guide the driver through a construction site or intersection, and offer glare-free high beam or bending light. This takes the driver’s road safety and driving comfort to a new level.
The new 16,384 pixel µPLS™ micro-Pixelated Light Solution from Nichia and Infineon combines high-definition resolution with industry’s highest light output. This solution enables a new automotive lighting experience by providing four-times wider field-of-view with significantly higher light output than any other current micro-mirror based HD matrix-light solution. The advanced HD light can warn drivers of hazards by highlighting people or objects, project markings on the road to guide the driver through a construction site or intersection, and offer glare-free high beam or bending light. This takes the driver’s road safety and driving comfort to a new level.

Three years ago Nichia Corporation and Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) announced the joint development of a high-definition (HD) light engine with more than 16,000 micro-LEDs for headlight applications. Now, both companies are launching industry’s first fully integrated micro-LED light engine for HD adaptive driving beam applications. The micro-LED matrix solution will be seen in a German premium vehicle in 2023.

“The new 16,384 pixel µPLS™ micro-Pixelated Light Solution is our latest addition to Nichia’s portfolio of high-class automotive lighting solutions,” said Yusuke Yamazaki, Head of Sales and Marketing Automotive, Nichia Europe GmbH. “It combines high-definition resolution with industry’s highest light output. This solution enables a new automotive lighting experience by providing four-times wider field-of-view with significantly higher light output than any other current micro-mirror based HD matrix-light solution. For this reason, the advanced HD light can warn drivers of hazards by highlighting people or objects on or by the side of the road. It can also project markings on the road to guide the driver through a construction site or intersection. In addition, functions such as the glare-free high beam or bending light work more precisely and smoothly compared to current adaptive driving beam solutions. This takes the driver’s road safety and driving comfort to a new level.”

“The µPLS is industry’s first fully integrated matrix LED driver capable of driving 16,384 LEDs, combining all required micro-LED driver circuitry with extensive diagnostics and high-speed video and control interfaces,” said Andreas Doll, Infineon’s Senior Vice-President and General Manager of the Business Unit Body Power of Infineon’s Automotive Division. “Our innovative µPLS is much more energy efficient than current HD matrix lighting solutions, contributing to saving global CO2 emissions and extending the range of electric driven vehicles. Furthermore, we enable the vision of our customers to deploy fully digital light on the road, saving them overall system cost at a very small form factor at the size of a single semiconductor chip. The µPLS is another great example of how Infineon products support digitalization as well as decarbonization towards a net-zero society.”

The new HD light engine uses Nichia’s micro-LED technology and an integrated LED driver IC from Infineon that can drive all 16,384 micro-LEDs individually using pulse-width modulation (PWM) control. Additionally, the driver IC monitors each micro-LED separately and provides on-chip temperature monitoring allowing for optimal thermal control. Integrated video interfaces enable high-speed transmission of the video signal from the light pattern generator unit. Unlike current HD matrix solutions, Infineon’s driver IC only activates the LEDs that are actually needed for a light pattern. This dramatically increases the energy efficiency of the µPLS light engine at much smaller form factor compared to micro-mirror-based HD matrix solutions in the market.

This allows for smaller and slimmer headlamp designs in the future. In addition, the new HD light engine enables adjustments that can be digitally programmed at the factory or activated by the vehicle manufacturer or driver on demand. For example, the different requirements of left- and right-handed drivers can be considered, significantly increasing user-friendliness. With all these features, the new HD light significantly reduces design and production complexity for vehicle manufacturers.

Hashtag: #Infineon #Nichia #LED

The issuer is solely responsible for the content of this announcement.

About Nichia Corporation

Having “Ever Researching for a Brighter World” as a motto, Nichia takes great pride in being the technology leader and world’s largest LED and laser diode manufacturer. Founded in 1956 as a specialty chemical producer, Nichia quickly became the leader in luminescent materials (phosphors). Nichia later developed and commercialized the first high-brightness blue LED in 1993 and the first white LED in 1996. Additional nitride-based LEDs in various colors were developed, including ultraviolet and visible Laser Diodes. Nichia believes that its products will remain at the forefront of energy-efficient solutions throughout the world for years to come.

Nichia will continue to be a company that makes contributions to the world by evolving its original and unique technologies and “Ever Researching for a Brighter World.” More information is available at .

More information on Infineon’s commitment to New Mobility:

The Telegraph Recommends Laos as One of 20 Places You Must Visit in 2023

Laos-China Railway

The British newspaper’s travel experts curated a collection of the 20 top destinations to visit this new year and Laos featured in the list among some other usual suspects like Spain, Switzerland and France. 

Hong Hong Baptist University-led research discovers new therapeutic target for irritable bowel syndrome

HONG KONG SAR – Media OutReach – 4 January 2023 – A research study led by scientists from the School of Chinese Medicine (SCM) at Hong Kong Baptist University (HKBU) has shown for the first time that the human gut bacterium Ruminococcus gnavus is a major trigger factor of diarrhoea-predominant irritable bowel syndrome (IBS-D). Based on this discovery, a new therapeutic target for the disease’s treatment was identified. The study also found that low-protein food items such as fresh fruits, vegetables and bread may help reduce the gut motility in IBS-D.

The research team of Professor Bian Zhaoxiang, Director of the Clinical Division and Tsang Shiu Tim Endowed Professor in Chinese Medicine Clinical Studies (middle); Dr Xavier Wong Hoi-leong, Assistant Professor of the Teaching and Research Division (right); and Dr Zhai Lixiang, Post-Doctoral Research Fellow (left) of SCM at HKBU, has shown for the first time that the human gut bacterium Ruminococcus gnavus is a major trigger factor of diarrhoea-predominant irritable bowel syndrome.
The research team of Professor Bian Zhaoxiang, Director of the Clinical Division and Tsang Shiu Tim Endowed Professor in Chinese Medicine Clinical Studies (middle); Dr Xavier Wong Hoi-leong, Assistant Professor of the Teaching and Research Division (right); and Dr Zhai Lixiang, Post-Doctoral Research Fellow (left) of SCM at HKBU, has shown for the first time that the human gut bacterium Ruminococcus gnavus is a major trigger factor of diarrhoea-predominant irritable bowel syndrome.

The research findings have been published in the internationally renowned scientific journal Cell Host & Microbe.

Curative treatment for IBS-D needed

Irritable bowel syndrome (IBS) is a common functional bowel disorder characterised by stool irregularities, abdominal discomfort and bloating. It has been estimated that about 7% of adults in Hong Kong are affected by IBS. IBS-D is the most common type of IBS and there is no known cure for the disease. Most clinical treatments for IBS-D focus on relieving symptoms.

Previous research has demonstrated that the increased production of serotonin, a key neurotransmitter involved in the regulation of gut motility, contributes to the gastrointestinal symptoms displayed in IBS-D. It has also been shown that gut microbiota play a role in regulating the levels of serotonin. However, the bacterial species concerned and the molecular mechanism by which the gut microbiota modulate serotonin production remain unclear.

Phenethylamine and tryptamine produced by Ruminococcus gnavus trigger IBS-D

To explore curative treatment options for IBS-D, a research team co-led by Professor Bian Zhaoxiang, Director of the Clinical Division and Tsang Shiu Tim Endowed Professor in Chinese Medicine Clinical Studies; Dr Xavier Wong Hoi-leong, Assistant Professor of the Teaching and Research Division; and Dr Zhai Lixiang, Post-Doctoral Research Fellow of SCM at HKBU, screened thousands of food components and their breakdown products in the fecal samples of 290 patients with IBS-D. They found that phenethylamine and tryptamine, two aromatic trace amines produced by the microbial digestion of dietary proteins, are highly enriched in IBS-D faeces, and they are associated with the severity of diarrheal symptoms in patients with IBS-D.

Probing further, the researchers found that mice which had been fed with either phenethylamine or tryptamine experienced increased stool frequencies and colonic secretions, which are major symptoms of IBS-D.

On the other hand, the team found that the gut bacterium Ruminococcus gnavus, which is enriched in IBS-D faecal samples, is a primary producer of phenethylamine and tryptamine. Furthermore, mice with this bacterium transplanted into their guts go on to develop IBS-D diarrheal symptoms. These results suggest that phenethylamine and tryptamine produced by Ruminococcus gnavus trigger IBS-D in mammals without the involvement of other risk factors of IBS-D.

Phenethylamine and tryptamine stimulate serotonin production

The research team further conducted a series of experiments to understand the mechanism by which phenethylamine and tryptamine lead to IBS-D. The results showed that phenethylamine and tryptamine directly stimulate the production of serotonin from the enterochromaffin cells in the gut through the activation of a trace amine-associated receptor (TAAR1), thereby stimulating gut motility and secretion disorders in IBS-D.

The team then explored the therapeutic potential of targeting the phenethylamine/tryptamine/TAAR1 pathway for the treatment of IBS-D. It was discovered that inhibition of TAAR1 activation through the use of a specific inhibitor effectively alleviated the diarrheal symptoms in mice which had been transplanted with IBS-D faecal samples.

Prospects for new therapeutic options

“With a full outline of the mechanism of how gut microbiota associate with gut motility disorders, our research results suggest that the phenethylamine/tryptamine-mediated TAAR1 pathway is a new therapeutic target for IBS-D,” said Dr Zhai Lixiang.

“IBS-D patients experience frequent episodes of diarrhea with accompanying abdominal pain, which reduce the quality of life. The research discoveries offer promising potential for the development of therapies for IBS-D based on the inhibition of the pathway,” said Professor Bian Zhaoxiang.

The research team also found that a diet low in phenylalanine, an amino acid and a dietary precursor of phenethylamine, suppresses gut motility in mice by reducing the microbial production of phenethylamine and tryptamine. Low-protein food items such as fresh fruits, vegetables and bread have relatively low levels of phenylalanine.

“Developing strategies to reduce the microbial transformation of dietary amino acids into phenethylamine and tryptamine, such as dietary intervention with reduced consumption of high-protein food items which usually have high phenylalanine levels, may represent a feasible approach for the management of IBS-D,” said Dr Xavier Wong.

Hashtag: #HongKongBaptistUniversity #HKBU

The issuer is solely responsible for the content of this announcement.

Covid Insurance Now Mandatory for Foreign Workers in Laos

Thavisub Insurance Office at the Friendship Bridge
Thavisub Insurance Office at the Friendship Bridge

A new regulation issued by the Ministry of Public Security sees all foreign workers entering Laos required to purchase Covid-19 insurance.

Students Set School on Fire Following E-Cigarette Confiscation

The teenagers who set the school on fire (photo: allinlaos)

Local police said on Tuesday that they had arrested three students for setting fire to their school in Savannakhet’s Kaysone Phomvihane city last month.

Thai Baht Expected to Strengthen in 2023

Thai baht reaches five-month high

The Thai baht is expected to have a strong year in 2023, buoyed by an influx of Chinese tourists and slowed US rate hikes.

Laos Sees 26 Deaths from Road Accidents Around New Year

People gather at the damaged car after an accident occured (photo: Top Laos Story)

During the New Year celebration period, 26 people lost their lives in road accidents across Laos.